Meta-analysis¶
Within this section the meta-analyses
, that is ROI co-activation
and meta-analyses - searchlight/gradient map comparison
, are shown, explained and set up in a way that they can be rerun and reproduced. In short, we employed the Neurosynth database to assess ROI co-activation patterns
and Neuroquery to obtain condition-specific meta-analytic maps
. The latter were compared to the searchlight
and gradient maps
computed in the previous steps, via a combination of spatial null models
and permutation correlation analyses
as implemented in the BrainSmash toolbox. These analyses were conducted to investigate if meta-analyses
based on large-scale datasets support aspects of the functional profiles
and if the obtained results are generalizable to a certain extent. The analysis was divided into the following sections:
Prerequisites
Auditory cortex ROIs
ROI co-activation
Neurosynth database
Co-activation analyses
Condition-specific meta-analytic maps
Meta-analytic map - searchlight/gradient map comparison
Spatial null models
Permutation correlation analyses
We provide more detailed information and explanations in the respective sections. As mentioned before, we’re working with derivatives
here and thus we can share them, meaning that you can rerun the analyses either by downloading this page as a Jupyter Notebook (via the download button at the top) or interactively via a cloud instance through the amazing mybinder project (the little rocket at the top). We recommend the later to spare installation and conda environment
related problems. One more thing… Please note, that here derivatives
refers to the computed permuted meta-analytic maps
(i.e. (spatial null models)
) which we provide via the project’s OSF page because their computation is computationally very expensive and would never run via the resources available through binder
. However, we included the code and explanations depicting how this steps were run. The code that will download the required data is included in the respective sections.
As usual, we will start with importing all necessary modules
and functions
.
from os.path import join as opj
from os.path import basename as opb
from nilearn.plotting import plot_img, plot_anat, plot_surf_stat_map, view_img_on_surf, plot_matrix
from nilearn.image import resample_to_img, math_img, load_img
from nilearn.input_data import NiftiMasker
from nilearn import datasets
from nilearn.surface import vol_to_surf
import nibabel as nb
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly
import plotly.graph_objects as go
from IPython.core.display import display, HTML
from plotly.offline import init_notebook_mode, plot
from neurosynth import Dataset
from neurosynth import decode, network
from neurosynth.base import dataset
from neuroquery import fetch_neuroquery_model, NeuroQueryModel
from matplotlib.patches import Arc
from glob import glob
from matplotlib import colors
from matplotlib.lines import Line2D
from scipy.spatial.distance import squareform, pdist
from scipy import stats
from brainsmash.mapgen.base import Base
from brainsmash.mapgen.sampled import Sampled
from brainsmash.mapgen.eval import sampled_fit
from brainsmash.mapgen.memmap import txt2memmap
from brainsmash.mapgen.stats import pearsonr, nonparp
Let’s also gather and set some important paths. This includes the path to the general derivatives
directory, as well as analyses
specific ones. In more detail, we of course aim to keep it as BIDS-y as possible and therefore set a path for the meta-analyses
here. To keep results and necessary prerequisites
separate (keeping it tidy), we also create a dedicated directory which will include the neurosynth database
and specify where the results from the previous steps are.
meta_dir = '/data/mvs/derivatives/meta_analyses'
roi_mask_path ='/data/mvs/derivatives/ROIs_masks/'
prereq_path = '/data/mvs/derivatives/meta_analyses/prerequisites/'
results_path = '/data/mvs/derivatives/meta_analyses/results'
sl_dir = '/data/mvs/derivatives/MVPA/results/searchlight/'
grad_dir = '/data/mvs/derivatives/connectivity/results/voxel_to_voxel/'
Prerequisites¶
Auditory Cortex ROIs¶
At first, we need to gather our auditory cortex ROIs
that we used throughout the previous analyses, as they are required for the ROI co-activation analyses
. Just as a reminder, this includes the STP, including HG, PP and PT, and the upper banks of the STG, including aSTG and pSTG. At first, we gather them within a list (please note that we will exclude the auditory cortex masks
):
rois = [roi for roi in glob(opj(roi_mask_path, '*.nii.gz'))
if not 'AC' in opb(roi)]
rois.sort()
rois
['/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-HGleft_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-HGright_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-PPleft_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-PPright_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-PTleft_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-PTright_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-aSTGleft_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-aSTGright_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-pSTGleft_mask.nii.gz',
'/data/mvs/derivatives/ROIs_masks/tpl-MNI152NLin6Sym_res_02_desc-pSTGright_mask.nii.gz']
Let’s pack the paths and the ROI
names in lists to ease up later processing steps:
HG_left = rois[0]
HG_right = rois[1]
PP_left = rois[2]
PP_right = rois[3]
PT_left = rois[4]
PT_right = rois[5]
aSTG_left = rois[6]
aSTG_right = rois[7]
pSTG_left = rois[8]
pSTG_right = rois[9]
list_rois = [HG_left, HG_right, PP_left, PP_right, PT_left, PT_right, aSTG_left, aSTG_right, pSTG_left, pSTG_right]
list_rois_names = ['HG_left', 'HG_right', 'PP_left', 'PP_right', 'PT_left', 'PT_right',
'aSTG_left', 'aSTG_right', 'pSTG_left', 'pSTG_right']
We will need the auditory cortex mask
later on as well, thus let’s set it:
ac_mask = opj(roi_mask_path, 'tpl-MNI152NLin6Sym_res_02_desc-AC_mask.nii.gz')
So far so good. As it has been a while since we last saw them, let’s have a look by overlaying them on the MNI152 template brain
:
#suppress contour related warnings
import warnings
warnings.filterwarnings("ignore")
sns.set_style('white')
plt.rcParams["font.family"] = "Arial"
fig=plt.figure(num=None, figsize=(12, 6))
check_ROIs = plot_anat(cut_coords=[-55, -34, 7], figure=fig, draw_cross=False)
check_ROIs.add_contours(HG_left,
colors=[sns.color_palette('cividis', 5)[0]],
filled=True)
check_ROIs.add_contours(PP_left,
colors=[sns.color_palette('cividis', 5)[1]],
filled=True)
check_ROIs.add_contours(PT_left,
colors=[sns.color_palette('cividis', 5)[2]],
filled=True)
check_ROIs.add_contours(aSTG_left,
colors=[sns.color_palette('cividis', 5)[3]],
filled=True)
check_ROIs.add_contours(pSTG_left,
colors=[sns.color_palette('cividis', 5)[4]],
filled=True)
check_ROIs.add_contours(HG_right,
colors=[sns.color_palette('cividis', 5)[0]],
filled=True)
check_ROIs.add_contours(PP_right,
colors=[sns.color_palette('cividis', 5)[1]],
filled=True)
check_ROIs.add_contours(PT_right,
colors=[sns.color_palette('cividis', 5)[2]],
filled=True)
check_ROIs.add_contours(aSTG_right,
colors=[sns.color_palette('cividis', 5)[3]],
filled=True)
check_ROIs.add_contours(pSTG_right,
colors=[sns.color_palette('cividis', 5)[4]],
filled=True)
check_ROIs.add_contours(ac_mask,
levels=[0], colors='black')
mask_legend = [Line2D([0], [0], color='black', lw=4, label='Auditory Cortex\n mask', alpha=0.8)]
first_legend = plt.legend(handles=mask_legend, bbox_to_anchor=(1.5,0.3), loc='right')
plt.gca().add_artist(first_legend)
roi_legend = [Line2D([0], [0], color=sns.color_palette('cividis', 5)[3], lw=4, label='aSTg'),
Line2D([0], [0], color=sns.color_palette('cividis', 5)[1], lw=4, label='PP'),
Line2D([0], [0], color=sns.color_palette('cividis', 5)[0], lw=4, label='HG'),
Line2D([0], [0], color=sns.color_palette('cividis', 5)[2], lw=4, label='PT'),
Line2D([0], [0], color=sns.color_palette('cividis', 5)[4], lw=4, label='pSTG')]
plt.legend(handles=roi_legend, bbox_to_anchor=(1.5,0.5), loc="right", title='ROIs')
plt.text(-215, 90, 'Auditory cortex ROIs',
fontsize=22)
Text(-215, 90, 'Auditory cortex ROIs')
That looks about right and we already have everything we need to start with our analyses, starting with the ROI co-activation
.
ROI co-activation¶
In this first set of meta-analyses we will investigate the so-called co-activation pattern
of our ROI
s. In more detail, we will use the latest version of the Neurosynth database to perform meta-analytic contrasts
to evaluate which voxels
have a high probability of being co-activated
with a given ROI
. The resulting maps will thus show us which voxels
/regions
are likely being active when there is activation in a given ROI
. To achieve this we basically only need two steps: getting the neurosynth database and running the co-activation analyses
.
Neurosynth database¶
The Neurosynth database is a large-scale repository targeted for meta-analyses
, containing thousands of peak activations across the entire range of neuroscientific literature. Here, we utilize the latest version, v0.7
including over 14k
studies. As everything is open and build around a great API
, we can easily download
the neurosynth files
:
ns_data_dir = opj(prereq_path, 'neurosynth_data/')
dataset.download(ns_data_dir, unpack=True)
Downloading the latest Neurosynth files: https://github.com/neurosynth/neurosynth-data/blob/master/current_data.tar.gz?raw=true bytes: 1
8192 [819200.00%16384 [1638400.00%24576 [2457600.00%32768 [3276800.00%40960 [4096000.00%49152 [4915200.00%57344 [5734400.00%65536 [6553600.00%73728 [7372800.00%81920 [8192000.00%90112 [9011200.00%98304 [9830400.00%106496 [10649600.00%114688 [11468800.00%122880 [12288000.00%131072 [13107200.00%139264 [13926400.00%147456 [14745600.00%155648 [15564800.00%163840 [16384000.00%172032 [17203200.00%180224 [18022400.00%188416 [18841600.00%196608 [19660800.00%204800 [20480000.00%212992 [21299200.00%221184 [22118400.00%229376 [22937600.00%237568 [23756800.00%245760 [24576000.00%253952 [25395200.00%262144 [26214400.00%270336 [27033600.00%278528 [27852800.00%286720 [28672000.00%294912 [29491200.00%303104 [30310400.00%311296 [31129600.00%319488 [31948800.00%327680 [32768000.00%335872 [33587200.00%344064 [34406400.00%352256 [35225600.00%360448 [36044800.00%368640 [36864000.00%376832 [37683200.00%385024 [38502400.00%393216 [39321600.00%401408 [40140800.00%409600 [40960000.00%417792 [41779200.00%425984 [42598400.00%434176 [43417600.00%442368 [44236800.00%450560 [45056000.00%458752 [45875200.00%466944 [46694400.00%475136 [47513600.00%483328 [48332800.00%491520 [49152000.00%499712 [49971200.00%507904 [50790400.00%516096 [51609600.00%524288 [52428800.00%532480 [53248000.00%540672 [54067200.00%548864 [54886400.00%557056 [55705600.00%565248 [56524800.00%573440 [57344000.00%581632 [58163200.00%589824 [58982400.00%598016 [59801600.00%606208 [60620800.00%614400 [61440000.00%622592 [62259200.00%630784 [63078400.00%638976 [63897600.00%647168 [64716800.00%655360 [65536000.00%663552 [66355200.00%671744 [67174400.00%679936 [67993600.00%688128 [68812800.00%696320 [69632000.00%704512 [70451200.00%712704 [71270400.00%720896 [72089600.00%729088 [72908800.00%737280 [73728000.00%745472 [74547200.00%753664 [75366400.00%761856 [76185600.00%770048 [77004800.00%778240 [77824000.00%786432 [78643200.00%794624 [79462400.00%802816 [80281600.00%811008 [81100800.00%819200 [81920000.00%827392 [82739200.00%835584 [83558400.00%843776 [84377600.00%851968 [85196800.00%860160 [86016000.00%868352 [86835200.00%876544 [87654400.00%884736 [88473600.00%892928 [89292800.00%901120 [90112000.00%909312 [90931200.00%917504 [91750400.00%925696 [92569600.00%933888 [93388800.00%942080 [94208000.00%950272 [95027200.00%958464 [95846400.00%966656 [96665600.00%974848 [97484800.00%983040 [98304000.00%991232 [99123200.00%999424 [99942400.00%1007616 [100761600.00%1015808 [101580800.00%1024000 [102400000.00%1032192 [103219200.00%1040384 [104038400.00%1048576 [104857600.00%1056768 [105676800.00%1064960 [106496000.00%1073152 [107315200.00%1081344 [108134400.00%1089536 [108953600.00%1097728 [109772800.00%1105920 [110592000.00%1114112 [111411200.00%1122304 [112230400.00%1130496 [113049600.00%1138688 [113868800.00%1146880 [114688000.00%1155072 [115507200.00%1163264 [116326400.00%1171456 [117145600.00%1179648 [117964800.00%1187840 [118784000.00%1196032 [119603200.00%1204224 [120422400.00%1212416 [121241600.00%1220608 [122060800.00%1228800 [122880000.00%1236992 [123699200.00%1245184 [124518400.00%1253376 [125337600.00%1261568 [126156800.00%1269760 [126976000.00%1277952 [127795200.00%1286144 [128614400.00%1294336 [129433600.00%1302528 [130252800.00%1310720 [131072000.00%1318912 [131891200.00%1327104 [132710400.00%1335296 [133529600.00%1343488 [134348800.00%1351680 [135168000.00%1359872 [135987200.00%1368064 [136806400.00%1376256 [137625600.00%1384448 [138444800.00%1392640 [139264000.00%1400832 [140083200.00%1409024 [140902400.00%1417216 [141721600.00%1425408 [142540800.00%1433600 [143360000.00%1441792 [144179200.00%1449984 [144998400.00%1458176 [145817600.00%1466368 [146636800.00%1474560 [147456000.00%1482752 [148275200.00%1490944 [149094400.00%1499136 [149913600.00%1507328 [150732800.00%1515520 [151552000.00%1523712 [152371200.00%1531904 [153190400.00%1540096 [154009600.00%1548288 [154828800.00%1556480 [155648000.00%1564672 [156467200.00%1572864 [157286400.00%1581056 [158105600.00%1589248 [158924800.00%1597440 [159744000.00%1605632 [160563200.00%1613824 [161382400.00%1622016 [162201600.00%1630208 [163020800.00%1638400 [163840000.00%1646592 [164659200.00%1654784 [165478400.00%1662976 [166297600.00%1671168 [167116800.00%1679360 [167936000.00%1687552 [168755200.00%1695744 [169574400.00%1703936 [170393600.00%1712128 [171212800.00%1720320 [172032000.00%1728512 [172851200.00%1736704 [173670400.00%1744896 [174489600.00%1753088 [175308800.00%1761280 [176128000.00%1769472 [176947200.00%1777664 [177766400.00%1785856 [178585600.00%1794048 [179404800.00%1802240 [180224000.00%1810432 [181043200.00%1818624 [181862400.00%1826816 [182681600.00%1835008 [183500800.00%1843200 [184320000.00%1851392 [185139200.00%1859584 [185958400.00%1867776 [186777600.00%1875968 [187596800.00%1884160 [188416000.00%1892352 [189235200.00%1900544 [190054400.00%1908736 [190873600.00%1916928 [191692800.00%1925120 [192512000.00%1933312 [193331200.00%1941504 [194150400.00%1949696 [194969600.00%1957888 [195788800.00%1966080 [196608000.00%1974272 [197427200.00%1982464 [198246400.00%1990656 [199065600.00%1998848 [199884800.00%2007040 [200704000.00%2015232 [201523200.00%2023424 [202342400.00%2031616 [203161600.00%2039808 [203980800.00%2048000 [204800000.00%2056192 [205619200.00%2064384 [206438400.00%2072576 [207257600.00%2080768 [208076800.00%2088960 [208896000.00%2097152 [209715200.00%2105344 [210534400.00%2113536 [211353600.00%2121728 [212172800.00%2129920 [212992000.00%2138112 [213811200.00%2146304 [214630400.00%2154496 [215449600.00%2162688 [216268800.00%2170880 [217088000.00%2179072 [217907200.00%2187264 [218726400.00%2195456 [219545600.00%2203648 [220364800.00%2211840 [221184000.00%2220032 [222003200.00%2228224 [222822400.00%2236416 [223641600.00%2244608 [224460800.00%2252800 [225280000.00%2260992 [226099200.00%2269184 [226918400.00%2277376 [227737600.00%2285568 [228556800.00%2293760 [229376000.00%2301952 [230195200.00%2310144 [231014400.00%2318336 [231833600.00%2326528 [232652800.00%2334720 [233472000.00%2342912 [234291200.00%2351104 [235110400.00%2359296 [235929600.00%2367488 [236748800.00%2375680 [237568000.00%2383872 [238387200.00%2392064 [239206400.00%2400256 [240025600.00%2408448 [240844800.00%2416640 [241664000.00%2424832 [242483200.00%2433024 [243302400.00%2441216 [244121600.00%2449408 [244940800.00%2457600 [245760000.00%2465792 [246579200.00%2473984 [247398400.00%2482176 [248217600.00%2490368 [249036800.00%2498560 [249856000.00%2506752 [250675200.00%2514944 [251494400.00%2523136 [252313600.00%2531328 [253132800.00%2539520 [253952000.00%2547712 [254771200.00%2555904 [255590400.00%2564096 [256409600.00%2572288 [257228800.00%2580480 [258048000.00%2588672 [258867200.00%2596864 [259686400.00%2605056 [260505600.00%2613248 [261324800.00%2621440 [262144000.00%2629632 [262963200.00%2637824 [263782400.00%2646016 [264601600.00%2654208 [265420800.00%2662400 [266240000.00%2670592 [267059200.00%2678784 [267878400.00%2686976 [268697600.00%2695168 [269516800.00%2703360 [270336000.00%2711552 [271155200.00%2719744 [271974400.00%2727936 [272793600.00%2736128 [273612800.00%2744320 [274432000.00%2752512 [275251200.00%2760704 [276070400.00%2768896 [276889600.00%2777088 [277708800.00%2785280 [278528000.00%2793472 [279347200.00%2801664 [280166400.00%2809856 [280985600.00%2818048 [281804800.00%2826240 [282624000.00%2834432 [283443200.00%2842624 [284262400.00%2850816 [285081600.00%2859008 [285900800.00%2867200 [286720000.00%2875392 [287539200.00%2883584 [288358400.00%2891776 [289177600.00%2899968 [289996800.00%2908160 [290816000.00%2916352 [291635200.00%2924544 [292454400.00%2932736 [293273600.00%2940928 [294092800.00%2949120 [294912000.00%2957312 [295731200.00%2965504 [296550400.00%2973696 [297369600.00%2981888 [298188800.00%2990080 [299008000.00%2998272 [299827200.00%3006464 [300646400.00%3014656 [301465600.00%3022848 [302284800.00%3031040 [303104000.00%3039232 [303923200.00%3047424 [304742400.00%3055616 [305561600.00%3063808 [306380800.00%3072000 [307200000.00%3080192 [308019200.00%3088384 [308838400.00%3096576 [309657600.00%3104768 [310476800.00%3112960 [311296000.00%3121152 [312115200.00%3129344 [312934400.00%3137536 [313753600.00%3145728 [314572800.00%3153920 [315392000.00%3162112 [316211200.00%3170304 [317030400.00%3178496 [317849600.00%3186688 [318668800.00%3194880 [319488000.00%3203072 [320307200.00%3211264 [321126400.00%3219456 [321945600.00%3227648 [322764800.00%3235840 [323584000.00%3244032 [324403200.00%3252224 [325222400.00%3260416 [326041600.00%3268608 [326860800.00%3276800 [327680000.00%3284992 [328499200.00%3293184 [329318400.00%3301376 [330137600.00%3309568 [330956800.00%3317760 [331776000.00%3325952 [332595200.00%3334144 [333414400.00%3342336 [334233600.00%3350528 [335052800.00%3358720 [335872000.00%3366912 [336691200.00%3375104 [337510400.00%3383296 [338329600.00%3391488 [339148800.00%3399680 [339968000.00%3407872 [340787200.00%3416064 [341606400.00%3424256 [342425600.00%3432448 [343244800.00%3440640 [344064000.00%3448832 [344883200.00%3457024 [345702400.00%3465216 [346521600.00%3473408 [347340800.00%3481600 [348160000.00%3489792 [348979200.00%3497984 [349798400.00%3506176 [350617600.00%3514368 [351436800.00%3522560 [352256000.00%3530752 [353075200.00%3538944 [353894400.00%3547136 [354713600.00%3555328 [355532800.00%3563520 [356352000.00%3571712 [357171200.00%3579904 [357990400.00%3588096 [358809600.00%3596288 [359628800.00%3604480 [360448000.00%3612672 [361267200.00%3620864 [362086400.00%3629056 [362905600.00%3637248 [363724800.00%3645440 [364544000.00%3653632 [365363200.00%3661824 [366182400.00%3670016 [367001600.00%3678208 [367820800.00%3686400 [368640000.00%3694592 [369459200.00%3702784 [370278400.00%3710976 [371097600.00%3719168 [371916800.00%3727360 [372736000.00%3735552 [373555200.00%3743744 [374374400.00%3751936 [375193600.00%3760128 [376012800.00%3768320 [376832000.00%3776512 [377651200.00%3784704 [378470400.00%3792896 [379289600.00%3801088 [380108800.00%3809280 [380928000.00%3817472 [381747200.00%3825664 [382566400.00%3833856 [383385600.00%3842048 [384204800.00%3850240 [385024000.00%3858432 [385843200.00%3866624 [386662400.00%3874816 [387481600.00%3883008 [388300800.00%3891200 [389120000.00%3899392 [389939200.00%3907584 [390758400.00%3915776 [391577600.00%3923968 [392396800.00%3932160 [393216000.00%3940352 [394035200.00%3948544 [394854400.00%3956736 [395673600.00%3964928 [396492800.00%3973120 [397312000.00%3981312 [398131200.00%3989504 [398950400.00%3997696 [399769600.00%4005888 [400588800.00%4014080 [401408000.00%4022272 [402227200.00%4030464 [403046400.00%4038656 [403865600.00%4046848 [404684800.00%4055040 [405504000.00%4063232 [406323200.00%4071424 [407142400.00%4079616 [407961600.00%4087808 [408780800.00%4096000 [409600000.00%4104192 [410419200.00%4112384 [411238400.00%4120576 [412057600.00%4128768 [412876800.00%4136960 [413696000.00%4145152 [414515200.00%4153344 [415334400.00%4161536 [416153600.00%4169728 [416972800.00%4177920 [417792000.00%4186112 [418611200.00%4194304 [419430400.00%4202496 [420249600.00%4210688 [421068800.00%4218880 [421888000.00%4227072 [422707200.00%4235264 [423526400.00%4243456 [424345600.00%4251648 [425164800.00%4259840 [425984000.00%4268032 [426803200.00%4276224 [427622400.00%4284416 [428441600.00%4292608 [429260800.00%4300800 [430080000.00%4308992 [430899200.00%4317184 [431718400.00%4325376 [432537600.00%4333568 [433356800.00%4341760 [434176000.00%4349952 [434995200.00%4358144 [435814400.00%4366336 [436633600.00%4374528 [437452800.00%4382720 [438272000.00%4390912 [439091200.00%4399104 [439910400.00%4407296 [440729600.00%4415488 [441548800.00%4423680 [442368000.00%4431872 [443187200.00%4440064 [444006400.00%4448256 [444825600.00%4456448 [445644800.00%4464640 [446464000.00%4472832 [447283200.00%4481024 [448102400.00%4489216 [448921600.00%4497408 [449740800.00%4505600 [450560000.00%4513792 [451379200.00%4521984 [452198400.00%4530176 [453017600.00%4538368 [453836800.00%4546560 [454656000.00%4554752 [455475200.00%4562944 [456294400.00%4571136 [457113600.00%4579328 [457932800.00%4587520 [458752000.00%4595712 [459571200.00%4603904 [460390400.00%4612096 [461209600.00%4620288 [462028800.00%4628480 [462848000.00%4636672 [463667200.00%4644864 [464486400.00%4653056 [465305600.00%4661248 [466124800.00%4669440 [466944000.00%4677632 [467763200.00%4685824 [468582400.00%4694016 [469401600.00%4702208 [470220800.00%4710400 [471040000.00%4718592 [471859200.00%4726784 [472678400.00%4734976 [473497600.00%4743168 [474316800.00%4751360 [475136000.00%4759552 [475955200.00%4767744 [476774400.00%4775936 [477593600.00%4784128 [478412800.00%4792320 [479232000.00%4800512 [480051200.00%4808704 [480870400.00%4816896 [481689600.00%4825088 [482508800.00%4833280 [483328000.00%4841472 [484147200.00%4849664 [484966400.00%4857856 [485785600.00%4866048 [486604800.00%4874240 [487424000.00%4882432 [488243200.00%4890624 [489062400.00%4898816 [489881600.00%4907008 [490700800.00%4915200 [491520000.00%4923392 [492339200.00%4931584 [493158400.00%4939776 [493977600.00%4947968 [494796800.00%4956160 [495616000.00%4964352 [496435200.00%4972544 [497254400.00%4980736 [498073600.00%4988928 [498892800.00%4997120 [499712000.00%5005312 [500531200.00%5013504 [501350400.00%5021696 [502169600.00%5029888 [502988800.00%5038080 [503808000.00%5046272 [504627200.00%5054464 [505446400.00%5062656 [506265600.00%5070848 [507084800.00%5079040 [507904000.00%5087232 [508723200.00%5095424 [509542400.00%5103616 [510361600.00%5111808 [511180800.00%5120000 [512000000.00%5128192 [512819200.00%5136384 [513638400.00%5144576 [514457600.00%5152768 [515276800.00%5160960 [516096000.00%5169152 [516915200.00%5177344 [517734400.00%5185536 [518553600.00%5193728 [519372800.00%5201920 [520192000.00%5210112 [521011200.00%5218304 [521830400.00%5226496 [522649600.00%5234688 [523468800.00%5242880 [524288000.00%5251072 [525107200.00%5259264 [525926400.00%5267456 [526745600.00%5275648 [527564800.00%5283840 [528384000.00%5292032 [529203200.00%5300224 [530022400.00%5308416 [530841600.00%5316608 [531660800.00%5324800 [532480000.00%5332992 [533299200.00%5341184 [534118400.00%5349376 [534937600.00%5357568 [535756800.00%5365760 [536576000.00%5373952 [537395200.00%5382144 [538214400.00%5390336 [539033600.00%5398528 [539852800.00%5406720 [540672000.00%5414912 [541491200.00%5423104 [542310400.00%5431296 [543129600.00%5439488 [543948800.00%5447680 [544768000.00%5455872 [545587200.00%5464064 [546406400.00%5472256 [547225600.00%5480448 [548044800.00%5488640 [548864000.00%5496832 [549683200.00%5505024 [550502400.00%5513216 [551321600.00%5521408 [552140800.00%5529600 [552960000.00%5537792 [553779200.00%5545984 [554598400.00%5554176 [555417600.00%5562368 [556236800.00%5570560 [557056000.00%5578752 [557875200.00%5586944 [558694400.00%5595136 [559513600.00%5603328 [560332800.00%5611520 [561152000.00%5619712 [561971200.00%5627904 [562790400.00%5636096 [563609600.00%5644288 [564428800.00%5652480 [565248000.00%5660672 [566067200.00%5668864 [566886400.00%5677056 [567705600.00%5685248 [568524800.00%5693440 [569344000.00%5701632 [570163200.00%5709824 [570982400.00%5718016 [571801600.00%5726208 [572620800.00%5734400 [573440000.00%5742592 [574259200.00%5750784 [575078400.00%5758976 [575897600.00%5767168 [576716800.00%5775360 [577536000.00%5783552 [578355200.00%5791744 [579174400.00%5799936 [579993600.00%5808128 [580812800.00%5816320 [581632000.00%5824512 [582451200.00%5832704 [583270400.00%5840896 [584089600.00%5849088 [584908800.00%5857280 [585728000.00%5865472 [586547200.00%5873664 [587366400.00%5881856 [588185600.00%5890048 [589004800.00%5898240 [589824000.00%5906432 [590643200.00%5914624 [591462400.00%5922816 [592281600.00%5931008 [593100800.00%5939200 [593920000.00%5947392 [594739200.00%5955584 [595558400.00%5963776 [596377600.00%5971968 [597196800.00%5980160 [598016000.00%5988352 [598835200.00%5996544 [599654400.00%6004736 [600473600.00%6012928 [601292800.00%6021120 [602112000.00%6029312 [602931200.00%6037504 [603750400.00%6045696 [604569600.00%6053888 [605388800.00%6062080 [606208000.00%6070272 [607027200.00%6078464 [607846400.00%6086656 [608665600.00%6094848 [609484800.00%6103040 [610304000.00%6111232 [611123200.00%6119424 [611942400.00%6127616 [612761600.00%6135808 [613580800.00%6144000 [614400000.00%6152192 [615219200.00%6160384 [616038400.00%6168576 [616857600.00%6176768 [617676800.00%6184960 [618496000.00%6193152 [619315200.00%6201344 [620134400.00%6209536 [620953600.00%6217728 [621772800.00%6225920 [622592000.00%6234112 [623411200.00%6242304 [624230400.00%6250496 [625049600.00%6258688 [625868800.00%6266880 [626688000.00%6275072 [627507200.00%6283264 [628326400.00%6291456 [629145600.00%6299648 [629964800.00%6307840 [630784000.00%6316032 [631603200.00%6324224 [632422400.00%6332416 [633241600.00%6340608 [634060800.00%6348800 [634880000.00%6356992 [635699200.00%6365184 [636518400.00%6373376 [637337600.00%6381568 [638156800.00%6389760 [638976000.00%6397952 [639795200.00%6406144 [640614400.00%6414336 [641433600.00%6422528 [642252800.00%6430720 [643072000.00%6438912 [643891200.00%6447104 [644710400.00%6455296 [645529600.00%6463488 [646348800.00%6471680 [647168000.00%6479872 [647987200.00%6488064 [648806400.00%6496256 [649625600.00%6504448 [650444800.00%6512640 [651264000.00%6520832 [652083200.00%6529024 [652902400.00%6537216 [653721600.00%6545408 [654540800.00%6553600 [655360000.00%6561792 [656179200.00%6569984 [656998400.00%6578176 [657817600.00%6586368 [658636800.00%6594560 [659456000.00%6602752 [660275200.00%6610944 [661094400.00%6619136 [661913600.00%6627328 [662732800.00%6635520 [663552000.00%6643712 [664371200.00%6651904 [665190400.00%6660096 [666009600.00%6668288 [666828800.00%6676480 [667648000.00%6684672 [668467200.00%6692864 [669286400.00%6701056 [670105600.00%6709248 [670924800.00%6717440 [671744000.00%6725632 [672563200.00%6733824 [673382400.00%6742016 [674201600.00%6750208 [675020800.00%6758400 [675840000.00%6766592 [676659200.00%6774784 [677478400.00%6782976 [678297600.00%6791168 [679116800.00%6799360 [679936000.00%6807552 [680755200.00%6815744 [681574400.00%6823936 [682393600.00%6832128 [683212800.00%6840320 [684032000.00%6848512 [684851200.00%6856704 [685670400.00%6864896 [686489600.00%6873088 [687308800.00%6881280 [688128000.00%6889472 [688947200.00%6897664 [689766400.00%6905856 [690585600.00%6914048 [691404800.00%6922240 [692224000.00%6930432 [693043200.00%6938624 [693862400.00%6946816 [694681600.00%6955008 [695500800.00%6963200 [696320000.00%6971392 [697139200.00%6979584 [697958400.00%6987776 [698777600.00%6995968 [699596800.00%7004160 [700416000.00%7012352 [701235200.00%7020544 [702054400.00%7028736 [702873600.00%7036928 [703692800.00%7045120 [704512000.00%7053312 [705331200.00%7061504 [706150400.00%7069696 [706969600.00%7077888 [707788800.00%7086080 [708608000.00%7094272 [709427200.00%7102464 [710246400.00%7110656 [711065600.00%7118848 [711884800.00%7127040 [712704000.00%7135232 [713523200.00%7143424 [714342400.00%7151616 [715161600.00%7159808 [715980800.00%7168000 [716800000.00%7176192 [717619200.00%7184384 [718438400.00%7192576 [719257600.00%7200768 [720076800.00%7208960 [720896000.00%7217152 [721715200.00%7225344 [722534400.00%7233536 [723353600.00%7241728 [724172800.00%7249920 [724992000.00%7258112 [725811200.00%7266304 [726630400.00%7274496 [727449600.00%7282688 [728268800.00%7290880 [729088000.00%7299072 [729907200.00%7307264 [730726400.00%7315456 [731545600.00%7323648 [732364800.00%7331840 [733184000.00%7340032 [734003200.00%7348224 [734822400.00%7356416 [735641600.00%7364608 [736460800.00%7372800 [737280000.00%7380992 [738099200.00%7389184 [738918400.00%7397376 [739737600.00%7405568 [740556800.00%7413760 [741376000.00%7421952 [742195200.00%7430144 [743014400.00%7438336 [743833600.00%7446528 [744652800.00%7454720 [745472000.00%7462912 [746291200.00%7471104 [747110400.00%7479296 [747929600.00%7487488 [748748800.00%7495680 [749568000.00%7503872 [750387200.00%7512064 [751206400.00%7520256 [752025600.00%7528448 [752844800.00%7536640 [753664000.00%7544832 [754483200.00%7553024 [755302400.00%7561216 [756121600.00%7569408 [756940800.00%7577600 [757760000.00%7585792 [758579200.00%7593984 [759398400.00%7602176 [760217600.00%7610368 [761036800.00%7618560 [761856000.00%7626752 [762675200.00%7634944 [763494400.00%7643136 [764313600.00%7651328 [765132800.00%7659520 [765952000.00%7667712 [766771200.00%7675904 [767590400.00%7684096 [768409600.00%7692288 [769228800.00%7700480 [770048000.00%7708672 [770867200.00%7716864 [771686400.00%7725056 [772505600.00%7733248 [773324800.00%7741440 [774144000.00%7749632 [774963200.00%7757824 [775782400.00%7766016 [776601600.00%7774208 [777420800.00%7782400 [778240000.00%7790592 [779059200.00%7798784 [779878400.00%7806976 [780697600.00%7815168 [781516800.00%7823360 [782336000.00%7831552 [783155200.00%7839744 [783974400.00%7847936 [784793600.00%7856128 [785612800.00%7864320 [786432000.00%7872512 [787251200.00%7880704 [788070400.00%7888896 [788889600.00%7897088 [789708800.00%7905280 [790528000.00%7913472 [791347200.00%7921664 [792166400.00%7929856 [792985600.00%7938048 [793804800.00%7946240 [794624000.00%7954432 [795443200.00%7962624 [796262400.00%7970816 [797081600.00%7979008 [797900800.00%7987200 [798720000.00%7995392 [799539200.00%8003584 [800358400.00%8011776 [801177600.00%8019968 [801996800.00%8028160 [802816000.00%8036352 [803635200.00%8044544 [804454400.00%8052736 [805273600.00%8060928 [806092800.00%8069120 [806912000.00%8077312 [807731200.00%8085504 [808550400.00%8093696 [809369600.00%8101888 [810188800.00%8110080 [811008000.00%8118272 [811827200.00%8126464 [812646400.00%8134656 [813465600.00%8142848 [814284800.00%8151040 [815104000.00%8159232 [815923200.00%8167424 [816742400.00%8175616 [817561600.00%8183808 [818380800.00%8192000 [819200000.00%8200192 [820019200.00%8208384 [820838400.00%8216576 [821657600.00%8224768 [822476800.00%8232960 [823296000.00%8241152 [824115200.00%8249344 [824934400.00%8257536 [825753600.00%8265728 [826572800.00%8273920 [827392000.00%8282112 [828211200.00%8290304 [829030400.00%8298496 [829849600.00%8306688 [830668800.00%8314880 [831488000.00%8323072 [832307200.00%8331264 [833126400.00%8339456 [833945600.00%8347648 [834764800.00%8355840 [835584000.00%8364032 [836403200.00%8372224 [837222400.00%8380416 [838041600.00%8388608 [838860800.00%8396800 [839680000.00%8404992 [840499200.00%8413184 [841318400.00%8421376 [842137600.00%8429568 [842956800.00%8437760 [843776000.00%8445952 [844595200.00%8454144 [845414400.00%8462336 [846233600.00%8470528 [847052800.00%8478720 [847872000.00%8486912 [848691200.00%8495104 [849510400.00%8503296 [850329600.00%8511488 [851148800.00%8519680 [851968000.00%8527872 [852787200.00%8536064 [853606400.00%8544256 [854425600.00%8552448 [855244800.00%8560640 [856064000.00%8568832 [856883200.00%8577024 [857702400.00%8585216 [858521600.00%8593408 [859340800.00%8601600 [860160000.00%8609792 [860979200.00%8617984 [861798400.00%8626176 [862617600.00%8634368 [863436800.00%8642560 [864256000.00%8650752 [865075200.00%8658944 [865894400.00%8667136 [866713600.00%8675328 [867532800.00%8683520 [868352000.00%8691712 [869171200.00%8699904 [869990400.00%8708096 [870809600.00%8716288 [871628800.00%8724480 [872448000.00%8732672 [873267200.00%8740864 [874086400.00%8749056 [874905600.00%8757248 [875724800.00%8765440 [876544000.00%8773632 [877363200.00%8781824 [878182400.00%8790016 [879001600.00%8798208 [879820800.00%8806400 [880640000.00%8814592 [881459200.00%8822784 [882278400.00%8830976 [883097600.00%8839168 [883916800.00%8847360 [884736000.00%8855552 [885555200.00%8863744 [886374400.00%8871936 [887193600.00%8880128 [888012800.00%8888320 [888832000.00%8896512 [889651200.00%8904704 [890470400.00%8912896 [891289600.00%8921088 [892108800.00%8929280 [892928000.00%8937472 [893747200.00%8945664 [894566400.00%8953856 [895385600.00%8962048 [896204800.00%8970240 [897024000.00%8978432 [897843200.00%8986624 [898662400.00%8994816 [899481600.00%9003008 [900300800.00%9011200 [901120000.00%9019392 [901939200.00%9027584 [902758400.00%9035776 [903577600.00%9043968 [904396800.00%9052160 [905216000.00%9060352 [906035200.00%9068544 [906854400.00%9076736 [907673600.00%9084928 [908492800.00%9093120 [909312000.00%9101312 [910131200.00%9109504 [910950400.00%9117696 [911769600.00%9125888 [912588800.00%9134080 [913408000.00%9142272 [914227200.00%9150464 [915046400.00%9158656 [915865600.00%9166848 [916684800.00%9175040 [917504000.00%9183232 [918323200.00%9191424 [919142400.00%9199616 [919961600.00%9207808 [920780800.00%9216000 [921600000.00%9224192 [922419200.00%9232384 [923238400.00%9240576 [924057600.00%9248768 [924876800.00%9256960 [925696000.00%9265152 [926515200.00%9273344 [927334400.00%9281536 [928153600.00%9289728 [928972800.00%9297920 [929792000.00%9306112 [930611200.00%9314304 [931430400.00%9322496 [932249600.00%9330688 [933068800.00%9338880 [933888000.00%9347072 [934707200.00%9355264 [935526400.00%9363456 [936345600.00%9371648 [937164800.00%9379840 [937984000.00%9388032 [938803200.00%9396224 [939622400.00%9404416 [940441600.00%9412608 [941260800.00%9420800 [942080000.00%9428992 [942899200.00%9437184 [943718400.00%9445376 [944537600.00%9453568 [945356800.00%9461760 [946176000.00%9469952 [946995200.00%9478144 [947814400.00%9486336 [948633600.00%9494528 [949452800.00%9502720 [950272000.00%9510912 [951091200.00%9519104 [951910400.00%9527296 [952729600.00%9535488 [953548800.00%9543680 [954368000.00%9551872 [955187200.00%9560064 [956006400.00%9568256 [956825600.00%9576448 [957644800.00%9584640 [958464000.00%9592832 [959283200.00%9601024 [960102400.00%9609216 [960921600.00%9617408 [961740800.00%9625600 [962560000.00%9633792 [963379200.00%9641984 [964198400.00%9650176 [965017600.00%9658368 [965836800.00%9666560 [966656000.00%9674752 [967475200.00%9682944 [968294400.00%9691136 [969113600.00%9699328 [969932800.00%9707520 [970752000.00%9715712 [971571200.00%9723904 [972390400.00%9732096 [973209600.00%9740288 [974028800.00%9748480 [974848000.00%9756672 [975667200.00%9764864 [976486400.00%9773056 [977305600.00%9781248 [978124800.00%9789440 [978944000.00%9797632 [979763200.00%9805824 [980582400.00%9814016 [981401600.00%9822208 [982220800.00%9830400 [983040000.00%9838592 [983859200.00%9846784 [984678400.00%9854976 [985497600.00%9863168 [986316800.00%9871360 [987136000.00%9879552 [987955200.00%9887744 [988774400.00%9895936 [989593600.00%9904128 [990412800.00%9912320 [991232000.00%9920512 [992051200.00%9928704 [992870400.00%9936896 [993689600.00%9945088 [994508800.00%9953280 [995328000.00%9961472 [996147200.00%9969664 [996966400.00%9977856 [997785600.00%9986048 [998604800.00%9994240 [999424000.00%10002432 [1000243200.00%10010624 [1001062400.00%10018816 [1001881600.00%10027008 [1002700800.00%10035200 [1003520000.00%10043392 [1004339200.00%10051584 [1005158400.00%10059776 [1005977600.00%10067968 [1006796800.00%10076160 [1007616000.00%10084352 [1008435200.00%10092544 [1009254400.00%10100736 [1010073600.00%10108928 [1010892800.00%10117120 [1011712000.00%10125312 [1012531200.00%10133504 [1013350400.00%10141696 [1014169600.00%10149888 [1014988800.00%10158080 [1015808000.00%10166272 [1016627200.00%10174464 [1017446400.00%10182656 [1018265600.00%10190848 [1019084800.00%10199040 [1019904000.00%10207232 [1020723200.00%10215424 [1021542400.00%10223616 [1022361600.00%10231808 [1023180800.00%10240000 [1024000000.00%10248192 [1024819200.00%10256384 [1025638400.00%10264576 [1026457600.00%10272768 [1027276800.00%10280960 [1028096000.00%10289152 [1028915200.00%10297344 [1029734400.00%10305536 [1030553600.00%10313728 [1031372800.00%10321920 [1032192000.00%10330112 [1033011200.00%10338304 [1033830400.00%10346496 [1034649600.00%10354688 [1035468800.00%10362880 [1036288000.00%10371072 [1037107200.00%10379264 [1037926400.00%10387456 [1038745600.00%10395648 [1039564800.00%10403840 [1040384000.00%10412032 [1041203200.00%10420224 [1042022400.00%10428416 [1042841600.00%10436608 [1043660800.00%10444800 [1044480000.00%10452992 [1045299200.00%10461184 [1046118400.00%10469376 [1046937600.00%10477568 [1047756800.00%10485760 [1048576000.00%10493952 [1049395200.00%10502144 [1050214400.00%10510336 [1051033600.00%10518528 [1051852800.00%10526720 [1052672000.00%10534912 [1053491200.00%10543104 [1054310400.00%10551296 [1055129600.00%10559488 [1055948800.00%10567680 [1056768000.00%10575872 [1057587200.00%10584064 [1058406400.00%10592256 [1059225600.00%10600448 [1060044800.00%10608640 [1060864000.00%10616832 [1061683200.00%10625024 [1062502400.00%10633216 [1063321600.00%10641408 [1064140800.00%10649600 [1064960000.00%10657792 [1065779200.00%10665984 [1066598400.00%10674176 [1067417600.00%10682368 [1068236800.00%10690560 [1069056000.00%10698752 [1069875200.00%10706944 [1070694400.00%10715136 [1071513600.00%10723328 [1072332800.00%10731520 [1073152000.00%10739712 [1073971200.00%10747904 [1074790400.00%10756096 [1075609600.00%10764288 [1076428800.00%10772480 [1077248000.00%10780672 [1078067200.00%10788864 [1078886400.00%10797056 [1079705600.00%10805248 [1080524800.00%10813440 [1081344000.00%10821632 [1082163200.00%10829824 [1082982400.00%10838016 [1083801600.00%10846208 [1084620800.00%10854400 [1085440000.00%10862592 [1086259200.00%10870784 [1087078400.00%10878976 [1087897600.00%10887168 [1088716800.00%10895360 [1089536000.00%10903552 [1090355200.00%10911744 [1091174400.00%10919936 [1091993600.00%10928128 [1092812800.00%10936320 [1093632000.00%10944512 [1094451200.00%10952704 [1095270400.00%10960896 [1096089600.00%10969088 [1096908800.00%10977280 [1097728000.00%10985472 [1098547200.00%10993664 [1099366400.00%11001856 [1100185600.00%11010048 [1101004800.00%11018240 [1101824000.00%11026432 [1102643200.00%11034624 [1103462400.00%11042816 [1104281600.00%11051008 [1105100800.00%11059200 [1105920000.00%11067392 [1106739200.00%11075584 [1107558400.00%11083776 [1108377600.00%11091968 [1109196800.00%11100160 [1110016000.00%11108352 [1110835200.00%11116544 [1111654400.00%11124736 [1112473600.00%11132928 [1113292800.00%11141120 [1114112000.00%11149312 [1114931200.00%11157504 [1115750400.00%11165696 [1116569600.00%11173888 [1117388800.00%11182080 [1118208000.00%11190272 [1119027200.00%11198464 [1119846400.00%11206656 [1120665600.00%11214848 [1121484800.00%11223040 [1122304000.00%11231232 [1123123200.00%11239424 [1123942400.00%11247616 [1124761600.00%11255808 [1125580800.00%11264000 [1126400000.00%11272192 [1127219200.00%11280384 [1128038400.00%11288576 [1128857600.00%11296768 [1129676800.00%11304960 [1130496000.00%11313152 [1131315200.00%11321344 [1132134400.00%11329536 [1132953600.00%11337728 [1133772800.00%11345920 [1134592000.00%11354112 [1135411200.00%11362304 [1136230400.00%11370496 [1137049600.00%11378688 [1137868800.00%11386880 [1138688000.00%11395072 [1139507200.00%11403264 [1140326400.00%11411456 [1141145600.00%11419648 [1141964800.00%11427840 [1142784000.00%11436032 [1143603200.00%11444224 [1144422400.00%11452416 [1145241600.00%11460608 [1146060800.00%11468800 [1146880000.00%11476992 [1147699200.00%11485184 [1148518400.00%11493376 [1149337600.00%11501568 [1150156800.00%11509760 [1150976000.00%11517952 [1151795200.00%11526144 [1152614400.00%11534336 [1153433600.00%11542528 [1154252800.00%11550720 [1155072000.00%11558912 [1155891200.00%11567104 [1156710400.00%11575296 [1157529600.00%11583488 [1158348800.00%11591680 [1159168000.00%11599872 [1159987200.00%11608064 [1160806400.00%11616256 [1161625600.00%11624448 [1162444800.00%11632640 [1163264000.00%11640832 [1164083200.00%11649024 [1164902400.00%11657216 [1165721600.00%11665408 [1166540800.00%11673600 [1167360000.00%11681792 [1168179200.00%11689984 [1168998400.00%11698176 [1169817600.00%11706368 [1170636800.00%11714560 [1171456000.00%11722752 [1172275200.00%11730944 [1173094400.00%11739136 [1173913600.00%11747328 [1174732800.00%11755520 [1175552000.00%11763712 [1176371200.00%11771904 [1177190400.00%11780096 [1178009600.00%11788288 [1178828800.00%11796480 [1179648000.00%11804672 [1180467200.00%11812864 [1181286400.00%11821056 [1182105600.00%11829248 [1182924800.00%11837440 [1183744000.00%11845632 [1184563200.00%11853824 [1185382400.00%11862016 [1186201600.00%11870208 [1187020800.00%11878400 [1187840000.00%11886592 [1188659200.00%11894784 [1189478400.00%11902976 [1190297600.00%11911168 [1191116800.00%11919360 [1191936000.00%11927552 [1192755200.00%11935744 [1193574400.00%11943936 [1194393600.00%11952128 [1195212800.00%11960320 [1196032000.00%11968512 [1196851200.00%11976704 [1197670400.00%11984896 [1198489600.00%11993088 [1199308800.00%12001280 [1200128000.00%12009472 [1200947200.00%12017664 [1201766400.00%12025856 [1202585600.00%12034048 [1203404800.00%12042240 [1204224000.00%12050432 [1205043200.00%12058624 [1205862400.00%12066816 [1206681600.00%12075008 [1207500800.00%12083200 [1208320000.00%12091392 [1209139200.00%12099584 [1209958400.00%12107776 [1210777600.00%12115968 [1211596800.00%12124160 [1212416000.00%12132352 [1213235200.00%12140544 [1214054400.00%12148736 [1214873600.00%12156928 [1215692800.00%12165120 [1216512000.00%12173312 [1217331200.00%12181504 [1218150400.00%12189696 [1218969600.00%12197888 [1219788800.00%12206080 [1220608000.00%12214272 [1221427200.00%12222464 [1222246400.00%12230656 [1223065600.00%12238848 [1223884800.00%12247040 [1224704000.00%12255232 [1225523200.00%12263424 [1226342400.00%12271616 [1227161600.00%12279808 [1227980800.00%12288000 [1228800000.00%12296192 [1229619200.00%12304384 [1230438400.00%12312576 [1231257600.00%12320768 [1232076800.00%12328960 [1232896000.00%12337152 [1233715200.00%12345344 [1234534400.00%12353536 [1235353600.00%12361728 [1236172800.00%12369920 [1236992000.00%12378112 [1237811200.00%12386304 [1238630400.00%12394496 [1239449600.00%12402688 [1240268800.00%12410880 [1241088000.00%12419072 [1241907200.00%12427264 [1242726400.00%12435456 [1243545600.00%12443648 [1244364800.00%12451840 [1245184000.00%12460032 [1246003200.00%12468224 [1246822400.00%12476416 [1247641600.00%12484608 [1248460800.00%12492800 [1249280000.00%12500992 [1250099200.00%12509184 [1250918400.00%12517376 [1251737600.00%12525568 [1252556800.00%12533760 [1253376000.00%12541952 [1254195200.00%12550144 [1255014400.00%12558336 [1255833600.00%12566528 [1256652800.00%12574720 [1257472000.00%12582912 [1258291200.00%12591104 [1259110400.00%12599296 [1259929600.00%12607488 [1260748800.00%12615680 [1261568000.00%12623872 [1262387200.00%12632064 [1263206400.00%12640256 [1264025600.00%12648448 [1264844800.00%12656640 [1265664000.00%12664832 [1266483200.00%12673024 [1267302400.00%12681216 [1268121600.00%12689408 [1268940800.00%12697600 [1269760000.00%12705792 [1270579200.00%12713984 [1271398400.00%12722176 [1272217600.00%12730368 [1273036800.00%12738560 [1273856000.00%12746752 [1274675200.00%12754944 [1275494400.00%12763136 [1276313600.00%12771328 [1277132800.00%12779520 [1277952000.00%12787712 [1278771200.00%12795904 [1279590400.00%12804096 [1280409600.00%12812288 [1281228800.00%12820480 [1282048000.00%12828672 [1282867200.00%12836864 [1283686400.00%12845056 [1284505600.00%12853248 [1285324800.00%12861440 [1286144000.00%12869632 [1286963200.00%12877824 [1287782400.00%12886016 [1288601600.00%12894208 [1289420800.00%12902400 [1290240000.00%12910592 [1291059200.00%12918784 [1291878400.00%12926976 [1292697600.00%12935168 [1293516800.00%12943360 [1294336000.00%12951552 [1295155200.00%12959744 [1295974400.00%12967936 [1296793600.00%12976128 [1297612800.00%12984320 [1298432000.00%12992512 [1299251200.00%13000704 [1300070400.00%13008896 [1300889600.00%13017088 [1301708800.00%13025280 [1302528000.00%13033472 [1303347200.00%13041664 [1304166400.00%13049856 [1304985600.00%13058048 [1305804800.00%13066240 [1306624000.00%13074432 [1307443200.00%13082624 [1308262400.00%13090816 [1309081600.00%13099008 [1309900800.00%13107200 [1310720000.00%13115392 [1311539200.00%13123584 [1312358400.00%13131776 [1313177600.00%13139968 [1313996800.00%13148160 [1314816000.00%13156352 [1315635200.00%13164544 [1316454400.00%13172736 [1317273600.00%13180928 [1318092800.00%13189120 [1318912000.00%13197312 [1319731200.00%13205504 [1320550400.00%13213696 [1321369600.00%13221888 [1322188800.00%13230080 [1323008000.00%13238272 [1323827200.00%13246464 [1324646400.00%13254656 [1325465600.00%13262848 [1326284800.00%13271040 [1327104000.00%13279232 [1327923200.00%13287424 [1328742400.00%13295616 [1329561600.00%13303808 [1330380800.00%13312000 [1331200000.00%13320192 [1332019200.00%13328384 [1332838400.00%13336576 [1333657600.00%13344768 [1334476800.00%13352960 [1335296000.00%13361152 [1336115200.00%13369344 [1336934400.00%13377536 [1337753600.00%13385728 [1338572800.00%13393920 [1339392000.00%13402112 [1340211200.00%13410304 [1341030400.00%13418496 [1341849600.00%13426688 [1342668800.00%13434880 [1343488000.00%13443072 [1344307200.00%13451264 [1345126400.00%13459456 [1345945600.00%13467648 [1346764800.00%13475840 [1347584000.00%13484032 [1348403200.00%13492224 [1349222400.00%13500416 [1350041600.00%13508608 [1350860800.00%13516800 [1351680000.00%13524992 [1352499200.00%13533184 [1353318400.00%13541376 [1354137600.00%13549568 [1354956800.00%13557760 [1355776000.00%13565952 [1356595200.00%13574144 [1357414400.00%13582336 [1358233600.00%13590528 [1359052800.00%13598720 [1359872000.00%13606912 [1360691200.00%13615104 [1361510400.00%13623296 [1362329600.00%13631488 [1363148800.00%13639680 [1363968000.00%13647872 [1364787200.00%13656064 [1365606400.00%13664256 [1366425600.00%13672448 [1367244800.00%13680640 [1368064000.00%13688832 [1368883200.00%13697024 [1369702400.00%13705216 [1370521600.00%13713408 [1371340800.00%13721600 [1372160000.00%13729792 [1372979200.00%13737984 [1373798400.00%13746176 [1374617600.00%13754368 [1375436800.00%13762560 [1376256000.00%13770752 [1377075200.00%13778944 [1377894400.00%13787136 [1378713600.00%13795328 [1379532800.00%13803520 [1380352000.00%13811712 [1381171200.00%13819904 [1381990400.00%13828096 [1382809600.00%13836288 [1383628800.00%13844480 [1384448000.00%13852672 [1385267200.00%13860864 [1386086400.00%13869056 [1386905600.00%13877248 [1387724800.00%13885440 [1388544000.00%13893632 [1389363200.00%13901824 [1390182400.00%13910016 [1391001600.00%13918208 [1391820800.00%13926400 [1392640000.00%13934592 [1393459200.00%13942784 [1394278400.00%13950976 [1395097600.00%13959168 [1395916800.00%13967360 [1396736000.00%13975552 [1397555200.00%13983744 [1398374400.00%13991936 [1399193600.00%14000128 [1400012800.00%14008320 [1400832000.00%14016512 [1401651200.00%14024704 [1402470400.00%14032896 [1403289600.00%14041088 [1404108800.00%14049280 [1404928000.00%14057472 [1405747200.00%14065664 [1406566400.00%14073856 [1407385600.00%14082048 [1408204800.00%14090240 [1409024000.00%14098432 [1409843200.00%14106624 [1410662400.00%14114816 [1411481600.00%14123008 [1412300800.00%14131200 [1413120000.00%14139392 [1413939200.00%14147584 [1414758400.00%14155776 [1415577600.00%14163968 [1416396800.00%14172160 [1417216000.00%14180352 [1418035200.00%14188544 [1418854400.00%14196736 [1419673600.00%14204928 [1420492800.00%14213120 [1421312000.00%14221312 [1422131200.00%14229504 [1422950400.00%14237696 [1423769600.00%14245888 [1424588800.00%14254080 [1425408000.00%14262272 [1426227200.00%14270464 [1427046400.00%14278656 [1427865600.00%14286848 [1428684800.00%14295040 [1429504000.00%14303232 [1430323200.00%14311424 [1431142400.00%14319616 [1431961600.00%14327808 [1432780800.00%14336000 [1433600000.00%14344192 [1434419200.00%14352384 [1435238400.00%14360576 [1436057600.00%14368768 [1436876800.00%14376960 [1437696000.00%14385152 [1438515200.00%14393344 [1439334400.00%14401536 [1440153600.00%14409728 [1440972800.00%14417920 [1441792000.00%14426112 [1442611200.00%14434304 [1443430400.00%14442496 [1444249600.00%14450688 [1445068800.00%14458880 [1445888000.00%14467072 [1446707200.00%14475264 [1447526400.00%14483456 [1448345600.00%14491648 [1449164800.00%14499840 [1449984000.00%14508032 [1450803200.00%14516224 [1451622400.00%14524416 [1452441600.00%14532608 [1453260800.00%14540800 [1454080000.00%14548992 [1454899200.00%14557184 [1455718400.00%14565376 [1456537600.00%14573568 [1457356800.00%14581760 [1458176000.00%14589952 [1458995200.00%14598144 [1459814400.00%14606336 [1460633600.00%14614528 [1461452800.00%14622720 [1462272000.00%14630912 [1463091200.00%14639104 [1463910400.00%14647296 [1464729600.00%14655488 [1465548800.00%14663680 [1466368000.00%14671872 [1467187200.00%14680064 [1468006400.00%14688256 [1468825600.00%14696448 [1469644800.00%14704640 [1470464000.00%14712832 [1471283200.00%14721024 [1472102400.00%14729216 [1472921600.00%14737408 [1473740800.00%14745600 [1474560000.00%14753792 [1475379200.00%14761984 [1476198400.00%14770176 [1477017600.00%14778368 [1477836800.00%14786560 [1478656000.00%14794752 [1479475200.00%14802944 [1480294400.00%14811136 [1481113600.00%14819328 [1481932800.00%14827520 [1482752000.00%14835712 [1483571200.00%14843904 [1484390400.00%14852096 [1485209600.00%14860288 [1486028800.00%14868480 [1486848000.00%14876672 [1487667200.00%14884864 [1488486400.00%14893056 [1489305600.00%14901248 [1490124800.00%14909440 [1490944000.00%14917632 [1491763200.00%14925824 [1492582400.00%14934016 [1493401600.00%14942208 [1494220800.00%14950400 [1495040000.00%14958592 [1495859200.00%14966784 [1496678400.00%14974976 [1497497600.00%14983168 [1498316800.00%14991360 [1499136000.00%14999552 [1499955200.00%15007744 [1500774400.00%15015936 [1501593600.00%15024128 [1502412800.00%15032320 [1503232000.00%15040512 [1504051200.00%15048704 [1504870400.00%15056896 [1505689600.00%15065088 [1506508800.00%15073280 [1507328000.00%15081472 [1508147200.00%15089664 [1508966400.00%15097856 [1509785600.00%15106048 [1510604800.00%15114240 [1511424000.00%15122432 [1512243200.00%15130624 [1513062400.00%15138816 [1513881600.00%15147008 [1514700800.00%15155200 [1515520000.00%15163392 [1516339200.00%15171584 [1517158400.00%15179776 [1517977600.00%15187968 [1518796800.00%15196160 [1519616000.00%15204352 [1520435200.00%15212544 [1521254400.00%15220736 [1522073600.00%15228928 [1522892800.00%15237120 [1523712000.00%15245312 [1524531200.00%15253504 [1525350400.00%15261696 [1526169600.00%15269888 [1526988800.00%15278080 [1527808000.00%15286272 [1528627200.00%15294464 [1529446400.00%15302656 [1530265600.00%15310848 [1531084800.00%15319040 [1531904000.00%15327232 [1532723200.00%15335424 [1533542400.00%15343616 [1534361600.00%15351808 [1535180800.00%15360000 [1536000000.00%15368192 [1536819200.00%15376384 [1537638400.00%15384576 [1538457600.00%15392768 [1539276800.00%15400960 [1540096000.00%15409152 [1540915200.00%15417344 [1541734400.00%15425536 [1542553600.00%15433728 [1543372800.00%15441920 [1544192000.00%15450112 [1545011200.00%15458304 [1545830400.00%15466496 [1546649600.00%15474688 [1547468800.00%15482880 [1548288000.00%15491072 [1549107200.00%15499264 [1549926400.00%15507456 [1550745600.00%15515648 [1551564800.00%15523840 [1552384000.00%15532032 [1553203200.00%15540224 [1554022400.00%15548416 [1554841600.00%15556608 [1555660800.00%15564800 [1556480000.00%15572992 [1557299200.00%15581184 [1558118400.00%15589376 [1558937600.00%15597568 [1559756800.00%15605760 [1560576000.00%15613952 [1561395200.00%15622144 [1562214400.00%15630336 [1563033600.00%15638528 [1563852800.00%15646720 [1564672000.00%15654912 [1565491200.00%15663104 [1566310400.00%15671296 [1567129600.00%15679488 [1567948800.00%15687680 [1568768000.00%15695872 [1569587200.00%15704064 [1570406400.00%15712256 [1571225600.00%15720448 [1572044800.00%15728640 [1572864000.00%15736832 [1573683200.00%15745024 [1574502400.00%15753216 [1575321600.00%15761408 [1576140800.00%15769600 [1576960000.00%15777792 [1577779200.00%15785984 [1578598400.00%15794176 [1579417600.00%15802368 [1580236800.00%15810560 [1581056000.00%15818752 [1581875200.00%15826944 [1582694400.00%15835136 [1583513600.00%15843328 [1584332800.00%15851520 [1585152000.00%15859712 [1585971200.00%15867904 [1586790400.00%15876096 [1587609600.00%15884288 [1588428800.00%15892480 [1589248000.00%15900672 [1590067200.00%15908864 [1590886400.00%15917056 [1591705600.00%15925248 [1592524800.00%15933440 [1593344000.00%15941632 [1594163200.00%15949824 [1594982400.00%15958016 [1595801600.00%15966208 [1596620800.00%15974400 [1597440000.00%15982592 [1598259200.00%15990784 [1599078400.00%15998976 [1599897600.00%16007168 [1600716800.00%16015360 [1601536000.00%16023552 [1602355200.00%16031744 [1603174400.00%16039936 [1603993600.00%16048128 [1604812800.00%16056320 [1605632000.00%16064512 [1606451200.00%16072704 [1607270400.00%16080896 [1608089600.00%16089088 [1608908800.00%16097280 [1609728000.00%16105472 [1610547200.00%16113664 [1611366400.00%16121856 [1612185600.00%16130048 [1613004800.00%16138240 [1613824000.00%16146432 [1614643200.00%16154624 [1615462400.00%16162816 [1616281600.00%16171008 [1617100800.00%16179200 [1617920000.00%16187392 [1618739200.00%16195584 [1619558400.00%16203776 [1620377600.00%16211968 [1621196800.00%16220160 [1622016000.00%16228352 [1622835200.00%16236544 [1623654400.00%16244736 [1624473600.00%16252928 [1625292800.00%16261120 [1626112000.00%16269312 [1626931200.00%16277504 [1627750400.00%16285696 [1628569600.00%16293888 [1629388800.00%16302080 [1630208000.00%16310272 [1631027200.00%16318464 [1631846400.00%16326656 [1632665600.00%16334848 [1633484800.00%16343040 [1634304000.00%16351232 [1635123200.00%16359424 [1635942400.00%16367616 [1636761600.00%16375808 [1637580800.00%16384000 [1638400000.00%16392192 [1639219200.00%16400384 [1640038400.00%16408576 [1640857600.00%16416768 [1641676800.00%16424960 [1642496000.00%16433152 [1643315200.00%16441344 [1644134400.00%16449536 [1644953600.00%16457728 [1645772800.00%16465920 [1646592000.00%16474112 [1647411200.00%16482304 [1648230400.00%16490496 [1649049600.00%16498688 [1649868800.00%16506880 [1650688000.00%16515072 [1651507200.00%16523264 [1652326400.00%16531456 [1653145600.00%16539648 [1653964800.00%16547840 [1654784000.00%16556032 [1655603200.00%16564224 [1656422400.00%16572416 [1657241600.00%16580608 [1658060800.00%16588800 [1658880000.00%16596992 [1659699200.00%16605184 [1660518400.00%16613376 [1661337600.00%16621568 [1662156800.00%16629760 [1662976000.00%16637952 [1663795200.00%16646144 [1664614400.00%16654336 [1665433600.00%16662528 [1666252800.00%16670720 [1667072000.00%16678912 [1667891200.00%16687104 [1668710400.00%16695296 [1669529600.00%16703488 [1670348800.00%16711680 [1671168000.00%16719872 [1671987200.00%16728064 [1672806400.00%16736256 [1673625600.00%16744448 [1674444800.00%16752640 [1675264000.00%16760832 [1676083200.00%16769024 [1676902400.00%16777216 [1677721600.00%16785408 [1678540800.00%16793600 [1679360000.00%16801792 [1680179200.00%16809984 [1680998400.00%16818176 [1681817600.00%16826368 [1682636800.00%16834560 [1683456000.00%16842752 [1684275200.00%16850944 [1685094400.00%16859136 [1685913600.00%16867328 [1686732800.00%16875520 [1687552000.00%16883712 [1688371200.00%16891904 [1689190400.00%16900096 [1690009600.00%16908288 [1690828800.00%16916480 [1691648000.00%16924672 [1692467200.00%16932864 [1693286400.00%16941056 [1694105600.00%16949248 [1694924800.00%16957440 [1695744000.00%16965632 [1696563200.00%16973824 [1697382400.00%16982016 [1698201600.00%16990208 [1699020800.00%16998400 [1699840000.00%17006592 [1700659200.00%17014784 [1701478400.00%17022976 [1702297600.00%17031168 [1703116800.00%17039360 [1703936000.00%17047552 [1704755200.00%17055744 [1705574400.00%17063936 [1706393600.00%17072128 [1707212800.00%17080320 [1708032000.00%17088512 [1708851200.00%17096704 [1709670400.00%17104896 [1710489600.00%17113088 [1711308800.00%17121280 [1712128000.00%17129472 [1712947200.00%17137664 [1713766400.00%17145856 [1714585600.00%17154048 [1715404800.00%17162240 [1716224000.00%17170432 [1717043200.00%17178624 [1717862400.00%17186816 [1718681600.00%17195008 [1719500800.00%17203200 [1720320000.00%17211392 [1721139200.00%17219584 [1721958400.00%17227776 [1722777600.00%17235968 [1723596800.00%17244160 [1724416000.00%17252352 [1725235200.00%17260544 [1726054400.00%17268736 [1726873600.00%17276928 [1727692800.00%17285120 [1728512000.00%17293312 [1729331200.00%17301504 [1730150400.00%17309696 [1730969600.00%17317888 [1731788800.00%17326080 [1732608000.00%17334272 [1733427200.00%17338397 [1733839700.00%
Next, we need to initiate the dataset
:
neurosynth_dataset = Dataset(opj(prereq_path, 'neurosynth_data/database.txt'))
and add the features
:
neurosynth_dataset.add_features(opj(prereq_path,'neurosynth_data/features.txt'))
In order to prevent having to run these steps every time, we will save the final dataset
as pkl
so that we can just load it:
neurosynth_dataset.save(opj(prereq_path,'neurosynth_data/neurosynth_dataset.pkl'))
We now have a Neurosynth database/set instance
we can interact with, it contains the information of included peak activations
and corresponding studies among other things:
neurosynth_dataset.activations.head(n=10)
id | doi | x | y | z | space | peak_id | table_id | table_num | title | authors | year | journal | i | j | k | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 9065511 | NaN | 38.0 | -48.0 | 49.0 | MNI | 548691 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 60 | 39 | 26 |
1 | 9065511 | NaN | -4.0 | -70.0 | 50.0 | MNI | 548692 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 61 | 28 | 47 |
2 | 9065511 | NaN | -34.0 | -52.0 | 60.0 | MNI | 548693 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 66 | 37 | 62 |
3 | 9065511 | NaN | -23.0 | 15.0 | 67.0 | MNI | 548694 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 70 | 70 | 56 |
4 | 9065511 | NaN | -23.0 | -20.0 | 68.0 | MNI | 548695 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 70 | 53 | 56 |
5 | 9065511 | NaN | 42.0 | -47.0 | -19.0 | MNI | 548696 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 26 | 40 | 24 |
6 | 9065511 | NaN | 25.0 | -35.0 | -8.0 | MNI | 548697 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 32 | 46 | 32 |
7 | 9065511 | NaN | -25.0 | -45.0 | -2.0 | MNI | 548698 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 35 | 40 | 58 |
8 | 9065511 | NaN | 52.0 | -62.0 | 14.0 | MNI | 548699 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 43 | 32 | 19 |
9 | 9065511 | NaN | 21.0 | -81.0 | 28.0 | MNI | 548700 | 28698 | 1. | Environmental knowledge is subserved by separa... | Aguirre GK, D'Esposito M | 1997 | The Journal of neuroscience : the official jou... | 50 | 22 | 34 |
As said before: easy and straightforward. Let’s continue with the co-activation analyses
.
Co-activation analyses¶
Besides downloading and initiating the dataset
, the neurosynth
module also comes with a lot of analyses functionality, including co-activation
which is part of the network
functions. Again, what we will assess with this analysis is the probability of voxels
/regions
being activated given that a certain ROI
is activated. Applied to our question at hand, we will check whichvoxels
/regions
are likely to be activated when our auditory cortex ROIs
show activation. What do we need to run the function?
help(network.coactivation)
Help on function coactivation in module neurosynth.analysis.network:
coactivation(dataset, seed, threshold=0.0, output_dir='.', prefix='', r=6)
Compute and save coactivation map given input image as seed.
This is essentially just a wrapper for a meta-analysis defined
by the contrast between those studies that activate within the seed
and those that don't.
Args:
dataset: a Dataset instance containing study and activation data.
seed: either a Nifti or Analyze image defining the boundaries of the
seed, or a list of triples (x/y/z) defining the seed(s). Note that
voxels do not need to be contiguous to define a seed--all supra-
threshold voxels will be lumped together.
threshold: optional float indicating the threshold above which voxels
are considered to be part of the seed ROI (default = 0)
r: optional integer indicating radius (in mm) of spheres to grow
(only used if seed is a list of coordinates).
output_dir: output directory to write to. Defaults to current.
If none, defaults to using the first part of the seed filename.
prefix: optional string to prepend to all coactivation images.
Output:
A set of meta-analysis images identical to that generated by
meta.MetaAnalysis.
Nice, not that much. dataset
will be the neurosynth dataset instance
we just created, seed
our auditory cortex ROI
(s) we set and checked above, threshold
the set default, r
not needed as we will provide ROI masks/images
, output_dir
our results_path
and prefix
the name of the auditory cortex ROI
at hand. Packing everything together this it how it looks for the left HG
:
network.coactivation(neurosynth_dataset, HG_left, output_dir=opj(results_path, 'neurosynth_maps'), prefix='%s_seed' %list_rois_names[0])
In our indicated results path
we should now have the image containing the co-activation pattern
, as well as several other outputs:
glob(opj(results_path, 'neurosynth_maps', '*'))
['/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_uniformity-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_pFgA.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_pA.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_uniformity-test_z.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_association-test_z.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_pFgA_given_pF=0.50.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_pAgF.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_pA_given_pF=0.50.nii.gz']
While all of these outputs are very informative and contain important outcomes, we will use only that image
most related to our question, i.e. the HG_left_seed_association-test_z_FDR_0.01.nii.gz
image. However, you can familiarize yourself with the different outcomes via the Neurosynth FAQ. In order to visualize the co-activation map
, we will define a small function relying on nilearn plotting tools
:
def plot_meta_analyses_map(meta_analyses_map, roi=None, interactive=False, surface=True, coactivation=True):
fs_average = datasets.fetch_surf_fsaverage('fsaverage')
if coactivation:
title = ' '.join(meta_analyses_map[meta_analyses_map.rfind('/')+1:meta_analyses_map.rfind('_seed')].split('_'))
title = 'Co-activation map %s' %title
else:
title = meta_analyses_map[meta_analyses_map.rfind('p-')+2:meta_analyses_map.rfind('_s')]
title = 'neuroquery meta-analyses map %s' %title
ac_masker = NiftiMasker(mask_img=ac_mask)
meta_analyses_map_ac_data = ac_masker.fit_transform(meta_analyses_map)
meta_analyses_map = ac_masker.inverse_transform(meta_analyses_map_ac_data)
if surface is False and interactive is False:
fig = plot_img(meta_analyses_map, threshold=0.1, bg_img=datasets.load_mni152_template(),
cmap='cividis', draw_cross=False, colorbar=True, title=title)
if roi:
fig.add_contours(roi, levels=[0],
colors='black',
filled=False)
elif surface is True and interactive is False:
hemis= ['left', 'right']
modes = ['lateral']
aspect_ratio=1.4
surf = {
'left': fs_average['infl_left'],
'right': fs_average['infl_right'],
}
texture = {
'left': vol_to_surf(meta_analyses_map, fs_average['pial_left']),
'right': vol_to_surf(meta_analyses_map, fs_average['pial_right'])
}
figsize = plt.figaspect(len(modes) / (aspect_ratio * len(hemis)))
fig, axes = plt.subplots(nrows=len(modes),
ncols=len(hemis),
figsize=figsize,
subplot_kw={'projection': '3d'})
axes = np.atleast_2d(axes)
for index_mode, mode in enumerate(modes):
for index_hemi, hemi in enumerate(hemis):
bg_map = fs_average['sulc_%s' % hemi]
plot_surf_stat_map(surf[hemi], texture[hemi],
view=mode, hemi=hemi,
bg_map=bg_map,
axes=axes[index_mode, index_hemi],
colorbar=False, # Colorbar created externally.
threshold=0.0001,
cmap='cividis')
for ax in axes.flatten():
# We increase this value to better position the camera of the
# 3D projection plot. The default value makes meshes look too small.
ax.dist = 6
fig.subplots_adjust(wspace=-0.02, hspace=0.0)
fig.suptitle(title)
elif surface is False and interactive is True:
fig = view_img(meta_analyses_map, cmap="cividis", threshold=0.0001, black_bg=False, colorbar=True,
draw_cross=False, bg_img=datasets.load_mni152_template(), title=title)
elif surface is True and interactive is True:
fig = view_img_on_surf(meta_analyses_map, cmap="cividis", threshold=0.0001, black_bg=False,
colorbar=False, surf_mesh=fs_average, title=title)
Let’s use it to plot the co-activation map
we just computed, namely the one for the left HG
:
plot_meta_analyses_map('/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_association-test_z_FDR_0.01.nii.gz', HG_left,
interactive=False, surface=True)
As we have everything we need in place, we can compute the co-activation maps
for all ROI
s using a small for-loop
:
for roi, roi_name in zip(list_rois, list_rois_names):
network.coactivation(neurosynth_dataset, roi, output_dir=opj(results_path, 'neurosynth_maps'), prefix='%s_seed' %roi_name)
Checking our results path
, we should now have co-activation maps
for each ROI
:
coactivation_maps = glob(opj(results_path, 'neurosynth_maps', '*_association-test_z_FDR_0.01.nii.gz'))
coactivation_maps.sort()
coactivation_maps
['/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/HG_right_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/PP_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/PP_right_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/PT_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/PT_right_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/aSTG_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/aSTG_right_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/pSTG_left_seed_association-test_z_FDR_0.01.nii.gz',
'/data/mvs/derivatives/meta_analyses/results/neurosynth_maps/pSTG_right_seed_association-test_z_FDR_0.01.nii.gz']
Jop, all there. Let’s plot them:
for roi_map in coactivation_maps:
plot_meta_analyses_map(roi_map, interactive=False, surface=True)
That already concludes the final step of the co-activation analyses
, as neurosynth
made it super easy and straightforward to compute these maps
. Next up, we will use Neuroquery to obtain meta-analytic maps
for each of our conditions
.
Condition specific meta-analytic maps¶
While the previous step used meta-analyses
to investigate the proposed functional principles by means of ROI co-activation
, we can also apply a different meta-analytic
approach to do so, which will additionally allow us to relate the outcomes even more directly to our study. This refers to condition specific meta-analytic maps
and means that we are going to use meta-analyses
to obtain maps
for our included conditions voice
, singing
and music
. Given that neurosynth
does include a set of pre-computed terms
which do not entail singing
, we will use Neuroquery to obtain these maps as it allows arbitrary queries
that are subsequently mapped to a controlled vocabulary
. Overall, it works comparably to neurosynth
: at first, we need to initiate a dataset
or in this case a model
:
encoder = NeuroQueryModel.from_data_dir(fetch_neuroquery_model())
We can now define an arbitrary query in text form
, for example: music
:
query = """Music"""
and apply the Neuroquery model
to it:
nq_music = encoder(query)
The output is a dictionary
that contains the meta-analytic map
in different form, words
that are similar
or related
to our query
and the corresponding studies
:
nq_music
{'brain_map': <nibabel.nifti1.Nifti1Image at 0x7fa64d429160>,
'z_map': <nibabel.nifti1.Nifti1Image at 0x7fa64d429160>,
'raw_tfidf': <1x6308 sparse matrix of type '<class 'numpy.float64'>'
with 1 stored elements in Compressed Sparse Row format>,
'smoothed_tfidf': array([1.19950202e-06, 0.00000000e+00, 0.00000000e+00, ...,
4.03333355e-05, 0.00000000e+00, 0.00000000e+00]),
'similar_words': similarity weight_in_brain_map weight_in_query n_documents
music 0.998861 11.399395 1.0 623
auditory 0.001724 1.035886 0.0 4009
temporal 0.000894 0.306217 0.0 11897
auditory cortex 0.000735 0.192881 0.0 846
cerebellum 0.000269 0.160110 0.0 5578
... ... ... ... ...
fluency 0.000003 0.000000 0.0 1098
fluent 0.000007 0.000000 0.0 524
focal 0.000005 0.000000 0.0 1406
focus 0.000004 0.000000 0.0 5586
zone 0.000040 0.000000 0.0 699
[2951 rows x 4 columns],
'similar_documents': pmid title \
0 15784423 Separate cortical networks involved in music p...
1 22110619 Music and Emotions in the Brain: Familiarity M...
2 16516496 It don't mean a thing…
3 22144968 A Functional MRI Study of Happy and Sad Emotio...
4 16023376 The rewards of music listening: Response and p...
.. ... ...
95 16624581 Cognitive priming in sung and instrumental mus...
96 17709121 A Parietal-Temporal Sensory-Motor Integration ...
97 17603027 A network for audio–motor coordination in skil...
98 23051903 Hyperactivation balances sensory processing de...
99 24790186 Connecting to Create: Expertise in Musical Imp...
pubmed_url similarity
0 https://www.ncbi.nlm.nih.gov/pubmed/15784423 0.876373
1 https://www.ncbi.nlm.nih.gov/pubmed/22110619 0.788177
2 https://www.ncbi.nlm.nih.gov/pubmed/16516496 0.776961
3 https://www.ncbi.nlm.nih.gov/pubmed/22144968 0.766900
4 https://www.ncbi.nlm.nih.gov/pubmed/16023376 0.765290
.. ... ...
95 https://www.ncbi.nlm.nih.gov/pubmed/16624581 0.265929
96 https://www.ncbi.nlm.nih.gov/pubmed/17709121 0.257820
97 https://www.ncbi.nlm.nih.gov/pubmed/17603027 0.234380
98 https://www.ncbi.nlm.nih.gov/pubmed/23051903 0.233563
99 https://www.ncbi.nlm.nih.gov/pubmed/24790186 0.231366
[100 rows x 4 columns],
'highlighted_text': '<highlighted_text><extracted_phrase standardized_form="music" in_model="true">Music</extracted_phrase></highlighted_text>'}
As the map
is Nifti1Image
, we can easily save it in our results path
:
nq_music['brain_map'].to_filename(opj(results_path, 'neuroquery_maps/neurquerymap-music_space-MNI152NLin2009cAsym.nii.gz'))
nq_music_map = glob(opj(results_path, 'neuroquery_maps/neurquerymap-music_space-MNI152NLin2009cAsym.nii.gz'))[0]
nq_music_map
'/data/mvs/derivatives/meta_analyses/results/neuroquery_maps/neurquerymap-music_space-MNI152NLin2009cAsym.nii.gz'
Using our plotting function from before we can check the map
:
plot_meta_analyses_map(nq_music_map, interactive=False, surface=True, coactivation=False)
The words
that are similar
or related
to our query
are stored in a Dataframe
and can thus be checked without problem:
print(nq_music["similar_words"].head(10))
similarity weight_in_brain_map weight_in_query n_documents
music 0.998861 11.399395 1.0 623
auditory 0.001724 1.035886 0.0 4009
temporal 0.000894 0.306217 0.0 11897
auditory cortex 0.000735 0.192881 0.0 846
cerebellum 0.000269 0.160110 0.0 5578
premotor 0.001050 0.130237 0.0 3200
motor 0.000259 0.129558 0.0 7928
sound 0.000679 0.110710 0.0 2261
parahippocampal 0.000360 0.108145 0.0 3512
superior 0.000596 0.087512 0.0 9978
The same holds true for the corresponding studies:
print(nq_music["similar_documents"].head(10))
pmid title \
0 15784423 Separate cortical networks involved in music p...
1 22110619 Music and Emotions in the Brain: Familiarity M...
2 16516496 It don't mean a thing…
3 22144968 A Functional MRI Study of Happy and Sad Emotio...
4 16023376 The rewards of music listening: Response and p...
5 25309407 Moving to Music: Effects of Heard and Imagined...
6 22114191 Long-term music training tunes how the brain t...
7 23274514 Neural correlates of music recognition in Down...
8 27084302 LSD modulates music-induced imagery via change...
9 23107380 Mentalising music in frontotemporal dementia
pubmed_url similarity
0 https://www.ncbi.nlm.nih.gov/pubmed/15784423 0.876373
1 https://www.ncbi.nlm.nih.gov/pubmed/22110619 0.788177
2 https://www.ncbi.nlm.nih.gov/pubmed/16516496 0.776961
3 https://www.ncbi.nlm.nih.gov/pubmed/22144968 0.766900
4 https://www.ncbi.nlm.nih.gov/pubmed/16023376 0.765290
5 https://www.ncbi.nlm.nih.gov/pubmed/25309407 0.762422
6 https://www.ncbi.nlm.nih.gov/pubmed/22114191 0.734953
7 https://www.ncbi.nlm.nih.gov/pubmed/23274514 0.733976
8 https://www.ncbi.nlm.nih.gov/pubmed/27084302 0.728159
9 https://www.ncbi.nlm.nih.gov/pubmed/23107380 0.724319
We can do the same for the other conditions
, starting with voice
:
query = """Voice"""
nq_voice = encoder(query)
nq_voice['brain_map'].to_filename(opj(results_path, 'neuroquery_maps/neurquerymap-voice_space-MNI152NLin2009cAsym.nii.gz'))
nq_voice_map = glob(opj(results_path, 'neuroquery_maps/neurquerymap-voice_space-MNI152NLin2009cAsym.nii.gz'))[0]
nq_voice_map
'/data/mvs/derivatives/meta_analyses/results/neuroquery_maps/neurquerymap-voice_space-MNI152NLin2009cAsym.nii.gz'
How does the neuroquery meta-analytic map
for voice
look like?
plot_meta_analyses_map(nq_voice_map, interactive=False, surface=True, coactivation=False)
Last but not least: singing
.
query = """Singing"""
nq_singing = encoder(query)
nq_singing['brain_map'].to_filename(opj(results_path, 'neuroquery_maps/neurquerymap-singing_space-MNI152NLin2009cAsym.nii.gz'))
nq_singing_map = glob(opj(results_path, 'neuroquery_maps/neurquerymap-singing_space-MNI152NLin2009cAsym.nii.gz'))[0]
nq_singing_map
'/data/mvs/derivatives/meta_analyses/results/neuroquery_maps/neurquerymap-singing_space-MNI152NLin2009cAsym.nii.gz'
And we plot this map
as well:
plot_meta_analyses_map(nq_singing_map, interactive=False, surface=True, coactivation=False)
Having obtained a meta-analyses based map
for each condition
, we can do two things: (1) evaluating if they reflect the proposed functional principles
given their assumed spectrotemporal modulations
and (2) compare them to the searchlight
and gradient maps
we computed in the previous steps to check if they carry condition specific
information that is generalizable
to a certain extent. The latter will be conducted in the next step.
Meta-analytic map - searchlight/gradient comparison¶
Throughout the last two decades, large scale meta-analyses and datasets it became more and more apparent that the majority of results exhibit a non-existent or heavily restricted generalizability beyond the utilized group of participants and study design/paradigm at hand. Being grounded in a prominent stimulus and task dependency, insights concerning a certain cognitive function or process can vary tremendously across studies and quite often even contradict one another. The processing of auditory information and thus the presumed functional principles
of the auditory cortex
are no exception to that. While we cannot overcome/address this directly, as we would need to measure a lot of participants with a lot of stimuli and tasks, we can deploy meta-analyses
to get a first glimpse. In more detail and applied to our study, we can use the condition specific meta-analyses maps
from Neuroquery
and compare them to the maps
we computed within our dataset
, that is searchlight
and gradient maps
. This should provide us with insights concerning condition specific
information that our maps
might carry and if they are generalizable
to a certain extent (by means of maps
computed through large-scale meta-analyses
). Prior studies comparing different maps
frequently computed the correlation
between them. The problem with this approach is that it leads to inflated p-values given the spatial autocorrelation
between voxels
and thus non-independence
in brain maps
. To account for this, recent work introduced spatial null models
that allow to access the significance
of a correlation
between two brain maps
through permutations
. The basic idea or null hypothesis
is that if two brain maps
are correlated
/related
in terms of their topography
, spatially altering
one should result in lower correlation values
than in the original one. Via repeating this n
times a distribution
of correlation values
can be obtained to which the original correlation
can be compared to. However, there are some caveats with this approach which are grounded in the very idea of it: spatial autocorrelation
. When creating spatial null models
based on random permutations
, the spatial autocorrelation
between voxels
is destroyed and with it the distinct characteristics of the topography
of a map
. Thus no claims regarding the comparison of the topography
can be made. In order to enable this, spatial null models
within which the spatial autocorrelation
is preserved during permutations
are needed. There are several methods that implement this, for example Spin permutations
and Moran Spectral Randomization
. Here, we decided to use surrogate maps
as introduced in (REF), because they support both volume based
and non-whole brain coverage
maps. This was crucial as our maps are in volume format
and restricted to our auditory cortex mask
. Luckily, the BrainSmash toolbox that supports this approach was just introduced. In more detail, we will use it to compare brain maps of interest
(our searchlight
and gradient maps
) to target brain maps
(i.e. neuroquery maps
). The respective analyses were divided into two steps: creating spatial null models
(i.e. surrogate maps
of the target brain map
) and computing the correlation
between maps
.
Spatial null models¶
As mentioned above, we need to create spatial null models
, i.e. permuted maps
that preserve the spatial autocorrelation
of the original map
(target brain map
). In oder to incorporate the spatial autocorrelation
into the permutation
, we need respective spatial information
, more precisely the distance between voxels
that are part of our maps
. Here this refers to the distance between voxels
within our auditory cortex mask
. So far, we used this mask
in a bilateral
manner, meaning we have both hemispheres
in one mask
:
sns.set_style('white')
plt.rcParams["font.family"] = "Arial"
fig=plt.figure(num=None, figsize=(12, 6))
ac_mask_both = plot_anat(cut_coords=[-55, -34, 7], figure=fig, draw_cross=False)
ac_mask_both.add_contours(ac_mask,
levels=[0], colors='black')
plt.text(-255, 90, 'Auditory cortex mask both hemispheres',
fontsize=20)
Given that we are talking about spatial autocorrelation
and distance between voxels
, we should however compute this for each hemisphere
separately. Thus, we need to gather the hemisphere specific auditory cortex masks
we created in the Auditory Cortex working model section:
ac_mask_left = opj(roi_mask_path, 'tpl-MNI152NLin6Sym_res_02_desc-ACleft_mask.nii.gz')
ac_mask_right = opj(roi_mask_path, 'tpl-MNI152NLin6Sym_res_02_desc-ACright_mask.nii.gz')
We are going to ensure that we cover the area as we did with our bilateral mask
:
sns.set_style('white')
plt.rcParams["font.family"] = "Arial"
fig=plt.figure(num=None, figsize=(12, 6))
ac_mask_both = plot_anat(cut_coords=[-55, -34, 7], figure=fig, draw_cross=False)
ac_mask_both.add_contours(ac_mask_left, linewidths=2,
levels=[0], colors=sns.color_palette('cividis', 5).as_hex()[0])
ac_mask_both.add_contours(ac_mask_right, linewidths=2,
levels=[0], colors=sns.color_palette('cividis', 5).as_hex()[4])
roi_legend = [Line2D([0], [0], color=sns.color_palette('cividis', 5)[0], lw=9, label='AC mask left'),
Line2D([0], [0], color=sns.color_palette('cividis', 5)[4], lw=9, label='AC mask right')]
plt.legend(handles=roi_legend, bbox_to_anchor=(-0.07,-0.1), loc="right", ncol=2, prop={'size': 14}, frameon=False)
plt.text(-250, 90, 'Auditory cortex mask per hemisphere',
fontsize=20)
Looks good, so let’s start with the voxel distance
computation for the left hemisphere
. At first, we need to load the mask
and check the shape
, as well as unique values of the data:
ac_mask_left_values = load_img(ac_mask_left)
print('The shape of the data is ', ac_mask_left_values.shape)
print('It has the following unique value: ', np.unique(ac_mask_left_values.get_fdata()))
The shape of the data is (91, 109, 91)
It has the following unique value: [0. 1.00000006]
As with most other binary masks, we have 0
and 1
indicating voxels
that are not included and those that are. We need to get the coordinates of the latter voxels
and can do that via numpy
. Please note, we are operating on a 3D image
and thus need the respective coordinates in x
, y
and z
:
coord_x_left, coord_y_left, coord_z_left = np.where(ac_mask_left_values.get_fdata() == np.unique(ac_mask_left_values.get_fdata())[1])
print('Number of x coordinates: ', coord_x_left.shape)
print('Number of y coordinates: ', coord_y_left.shape)
print('Number of z coordinates: ', coord_z_left.shape)
Number of x coordinates: (2343,)
Number of y coordinates: (2343,)
Number of z coordinates: (2343,)
Next, we are going to bring them back together, stacking them across x
, y
and z
:
voxel_coords_left = np.vstack([coord_x_left, coord_y_left, coord_z_left]).T
voxel_coords_left.shape
(2343, 3)
Given that the coordinates
so far in voxel space
, but we need them in reference space
, a transformation
is required. To do this end, we will apply the affine
of the auditory cortex mask
to our coordinates
using nibabel
:
voxel_coords_left = nb.affines.apply_affine(ac_mask_left_values.affine, voxel_coords_left)
voxel_coords_left.shape
(2343, 3)
With that we are ready to compute the distance between voxels
, which we can do via scipy’s spatial.distance module, more precisely pdist, using euclidean
as the metric
:
ac_dist_left= pdist(voxel_coords_left, metric='euclidean')
ac_dist_left.shape
(2743653,)
As a result, we get the distance between all voxels
in the left auditory cortex mask
, that is the distance
between a given voxel
and all other voxels
. To bring it a more comprehensible form and also the one we will need later on, we will convert this 1D
array into a square matrix
or voxel by voxel distance matrix
using scipy's
squareform
:
ac_dist_left = squareform(ac_dist_left)
ac_dist_left.shape
(2343, 2343)
Checks out, nice. Before we plot this voxel by voxel distance matrix
, let’s do the same for the right hemisphere
so that we can plot both side by side:
ac_mask_right_values = load_img(ac_mask_right)
coord_x_right, coord_y_right, coord_z_right = np.where(ac_mask_right_values.get_fdata() == np.unique(ac_mask_right_values.get_fdata())[1])
voxel_coords_right = np.vstack([coord_x_right, coord_y_right, coord_z_right]).T
voxel_coords_right = nb.affines.apply_affine(ac_mask_right_values.affine, voxel_coords_right)
ac_dist_right= squareform(pdist(voxel_coords_right, metric='euclidean'))
ac_dist_right.shape
(2313, 2313)
Coolio, now to the plot. As done throughout all sections we will define a small function that supports both non-interactive and interactive graphics:
def plot_voxel_distance_matrix(dist_mat_left, dist_mat_right, interactive=False):
if interactive is False:
sns.set_style('white')
plt.rcParams["font.family"] = "Arial"
fig, axes = plt.subplots(1,2, figsize = (22, 10))
plot_matrix(dist_mat_left, cmap='cividis', axes=axes[0])
axes[0].set_xlabel('<-- Auditory cortex voxels -->', fontsize=20)
axes[0].set_xticklabels([''])
axes[0].set_ylabel('<-- Auditory cortex voxels -->', fontsize=20)
axes[0].set_yticklabels([''])
axes[0].set_title('left hemisphere', fontsize=20)
plt.subplots_adjust(wspace=0.4)
plot_matrix(dist_mat_right, cmap='cividis', axes=axes[1], colorbar=False)
axes[1].set_xlabel('<-- Auditory cortex voxels -->', fontsize=20)
axes[1].set_xticklabels([''])
axes[1].yaxis.set_label_position("right")
axes[1].set_ylabel('<-- Auditory cortex voxels -->', fontsize=20)
axes[1].set_yticklabels([''])
axes[1].set_title('right hemisphere', fontsize=20)
fig.suptitle('Voxel by voxel euclidean distance within the auditory cortex mask', size=25)
plt.show()
else:
from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2,
subplot_titles=('left hemisphere', 'right hemisphere'),
horizontal_spacing=0.18)
fig.add_trace(go.Heatmap(z=dist_mat_left[:630,:630],
colorscale='cividis',colorbar_x=0.46, transpose=True), row=1, col=1)
fig.add_trace(go.Heatmap(z=dist_mat_right[:630,:630],
colorscale='cividis', showscale = False, transpose=True), row=1, col=2)
fig.update_layout(
autosize=False,
width=900,
height=600,)
fig['layout'].update(template='simple_white')
fig.update_layout(
title={
'text': "Voxel by voxel euclidean distance within the auditory cortex mask",
'y':0.93,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'})
fig['layout']['xaxis']['title']='<-- Auditory cortex voxels -->'
fig['layout']['xaxis2']['title']='<-- Auditory cortex voxels -->'
fig['layout']['yaxis']['title']='<-- Auditory cortex voxels -->'
fig['layout']['yaxis2']['title']='<-- Auditory cortex voxels -->'
fig['layout']['yaxis']['autorange'] = "reversed"
fig['layout']['yaxis2']['autorange'] = "reversed"
fig['layout']['yaxis2']['side'] = "right"
init_notebook_mode(connected=True)
plot(fig, filename = 'voxel2voxel_dist.html')
display(HTML('voxel2voxel_dist.html'))
Applied to our computed voxel by voxel distance matrices
, this is how things look like:
plot_voxel_distance_matrix(ac_dist_left, ac_dist_right, interactive=True)